一种基于模糊推理的电机气隙偏心故障诊断方法

文档序号:8298119
一种基于模糊推理的电机气隙偏心故障诊断方法
【技术领域】
[0001] 本发明涉及一种电机气隙偏心故障诊断方法,特别的涉及一种基于模糊推理的交 流感应电机气隙偏心故障诊断方法。
【背景技术】
[0002] 交流感应电机广泛的应用于工业和国防军事领域,其安全运行至关重要。电机 故障在线诊断是通过在线监测电机相关参数(如电压、电流、磁通、转速、温度、噪声、振动 等),并采取适当的手段对电机当前的状态进行评估,进一步的可以确定电机的故障类型和 严重程度,并给予推荐行动。
[0003] 交流感应电机的故障类型大体可以分为机械故障与电气故障,更具体的可以细分 为定子故障、转子故障、气隙偏心与轴承故障等。气隙偏心作为一种常见的感应电机故障, 大多与感应电机机械故障有关,其中,静态偏心的故障原因包括柔性基础、软脚以及轴承松 动等,动态偏心的故障原因包括转轴弯曲挠度、轴承磨损以及机械共振等。因此,当感应电 机出现气息偏心时,必然伴随着一种或多种机械故障的发生,此时,如果能够根据有关的故 障特征,推理出导致气隙偏心的机械故障原因(或者贡献最大的机械故障原因),将对感应 电机的诊断和维修起到重要的指导意义。
[0004] 基于知识和基于神经网络的诊断方法在电机故障诊断应用上已经取得了较大的 成功,但是,还未见有关的研宄和报导将基于知识和基于模糊诊断方法应用于电机气隙偏 心故障的诊断,往往只是诊断出气隙偏心的存在,而不能给出导致气隙偏心的机械故障原 因。

【发明内容】

[0005] 因此,本发明提出基于模糊推理的电机气隙偏心故障诊断,利用气隙偏心和机械 故障间的模糊关系,依据模糊算法,推理导致电机气隙偏心故障的机械故障原因,提供气隙 偏心故障的维修指导。
[0006] 本发明提出了基于模糊推理的交流感应电机气隙偏心故障诊断方法,主要包含以 下步骤:
[0007] 第一步:将与导致电机气隙偏心的机械故障有关的信号参数作为电机故障征兆集S={Si,s2,…,sj,其中Si,s2,…,sn为故障征兆;
[0008] 第二步:确定产生所述故障征兆的故障模式,所有故障模式的集合称为故障模式 集M,其中M= {Mi,M2,…,MJ;
[0009] 第三步:根据模糊关系,建立所述故障征兆集S与所述故障模式集的模糊关系矩 阵W;
[0010] 第四步:利用所述模糊关系矩阵W,计算电机当前状态所对应的故障特征集sk对 各种故障模式MP(P= 1,2,…,m)的隶属度,并将隶属度进行从大到小的排序,隶属度最大 值所对应的故障模式即为当前产生气隙偏心的故障原因。
【附图说明】
[0011] 下面结合附图对本发明作进一步详细的说明。
[0012] 图1为本发明中基于模糊推理的交流感应电机气隙偏心故障诊断的流程图。
[0013] 图2为本发明中计算故障特征集对故障模式隶属度的流程图。
【具体实施方式】
[0014] 下面结合具体实施例,参照附图对本发明的【具体实施方式】进行详细的说明。
[0015] 参照附图1,本发明的基于模糊推理的交流感应电机气隙偏心故障诊断方法主要 包含以下步骤:
[0016] 步骤一:确定电机气隙偏心故障征兆集S。将与电机气隙偏心和与导致电机气隙 偏心的机械故障有关的电、磁、振动、声等信号参数作为故障征兆Si,(i= 1,2,……,n)故 障征兆的集合称为故障征兆集S:
[0017] S= {s"s2,…,sj
[0018] 对于ESA(电信号分析)方法,更为详细的说是与气隙偏心和导致气隙偏心的机械 故障有关的电流频率分量,包括反映偏心的频率特征、静态偏心的频率特征、动态偏心的频 率特征、柔性基础的频率特征、轴承磨损的频率特征以及更多相关的机械故障频率特征。为 便于阐述方法思路,简单的选择偏心的频率特征f;。。、静态偏心的频率特征f_s以及动态偏 心的频率特征作为故障征兆Sl,s2,s3,来研宄交流感应电机气隙偏心故障诊断。取故 障征兆集为:
[0019] S= {s"s2,s3}
[0020] 对Sl,s2,s3进行模糊处理,设置正大(PB)、正中(PM)、正?。≒S)三种模糊状态,在 理论上组成27种故障征兆的特征状态,构成S集合群P= {S」},j= 1,2,. . .,27。
[0021] 步骤二:确定电机气隙偏心故障模式集M。产生这些故障征兆的原因叫故障模式, 所有故障原因的集合叫故障模式集M,M={MpM2,…,MJ。
[0022] 简化分析,初步设定交流感应电机气隙偏心故障模式集M为:
[0023] M= {Mp},p= 1,2, 3,4
[0024] 其中:
[0025] Mj--软脚;
[0026] M2--轴承松动:
[0027] M3--转轴弯曲挠度;
[0028] M4--轴承磨损。
[0029] 步骤三:根据模糊关系建立电机气隙偏心故障征兆集S与电机气隙偏心故障模式 集M的模糊关系矩阵W。
[0030] 故障模式1与故障征兆集\之间常常是一种非线性模糊对应关系,根据模糊关系 原理建立M与S之间的关系矩阵为:
[0031]
【主权项】
1. 一种基于模糊推理的交流感应电机气隙偏心故障诊断方法,主要包含以下步骤: 第一步:将与导致电机气隙偏心的机械故障有关的信号参数作为电机故障征兆集S= {Si,s2,…,sj,其中Si,s2,…,sn为故障征兆; 第二步:确定产生所述故障征兆的故障模式,所有故障模式的集合称为故障模式集M, 其中M=…為,…,MJ; 第三步:根据模糊关系,建立所述故障征兆集S与所述故障模式集的模糊关系矩阵W; 第四步:利用所述模糊关系矩阵W,计算电机当前状态所对应的故障特征集Sk对各种 故障模SMp(p= 1,2,…,m)的隶属度,并将隶属度进行从大到小的排序,隶属度最大值所 对应的故障模式即为当前产生气隙偏心的故障原因。
2. 如权利要求1所述的故障诊断方法,其中在第一步中,选择电机偏心的频率特征 f;。。、静态偏心的频率特征f_s以及动态偏心的频率特征f_d作为故障征兆ss2,s3,取故 障征兆集为S= {Sl,s2,s3},并对Sl,s2,s3分别进行模糊处理,设置正大(PB)、正中(PM)、正 ?。≒S)三种模糊状态,将~的三种模糊状态表示为sr,s2,,s3,,将s2的三种模糊状态表示 为s4,,s5,,s6,,将s3的二种模糊状态表不为S7,,s8,,s9,。
3. 如权利要求1所述的故障诊断方法,其中在第二步中,将电机的软脚,轴承松动,转 轴弯曲挠度和轴承磨损设为故障模式。
4. 如权利要求2所述的故障诊断方法,其中在第四步中,确定电机当前状态 所对应的特征集f= ("4,其中,对于故障模式Mp(p= 1,2,…,m),电机当 前状态的故障特征所具有的权值分别为Wpl,1 = 1,2, 3,彳e丨?,心,% }, 4e丨?,?,?丨,(?,?,?丨,当彳=?时,Wpl取wpi,的值,其中Wpi,为模糊关系矩 阵W中Si,对应的权值(i' = 1,2...,9,); 隶属度计算采用加权平均算法,任一特征集Sk对给定故障模SMP的隶属度为:
【专利摘要】本发明提出一种基于模糊推理的电机气隙偏心故障诊断方法,该方法利用气隙偏心和机械故障间的模糊关系,依据模糊算法,推理导致电机气隙偏心故障的机械故障原因,提供气隙偏心故障的维修指导。
【IPC分类】G01R31-34
【公开号】CN104614673
【申请号】CN201510087882
【发明人】张民恕, 黄沛明, 方在华
【申请人】刘岩
【公开日】2015年5月13日
【申请日】2015年2月25日
再多了解一些
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1
博牛彩票手机app下载 开原市| 天峻县| 军事| 芦溪县| 临洮县| 凤城市| 肃北| 黎城县| 长汀县| 南昌县| 克东县| 密山市| 庆城县| 都匀市| 衡阳市| 潼南县| 将乐县| 中超| 明溪县| 洛川县| 中牟县| SHOW| 嘉荫县| 龙南县| 九寨沟县| 上杭县| 华容县| 西吉县| 呼图壁县| 大同县| 龙海市| 莱芜市| 武鸣县| 璧山县| 临清市| 敖汉旗| 太仆寺旗| 西和县| 孙吴县| 新丰县| 乌拉特前旗|